Clustered Colouring in Minor-Closed Classes

نویسندگان

  • Sergey Norin
  • Alex Scott
  • Paul Seymour
  • David R. Wood
چکیده

The clustered chromatic number of a class of graphs is the minimum integer k such that for some integer c every graph in the class is k-colourable with monochromatic components of size at most c. We prove that for every graph H , the clustered chromatic number of the class of H-minor-free graphs is tied to the tree-depth of H . In particular, if H has tree-depth t then every H-minor-free graph is 4t-colourable with monochromatic components of size at most c(H). This provides evidence for a conjecture of Ossona de Mendez, Oum and Wood (2016). If H is connected with tree-depth 3, then we prove that 4 colours suffice. We also determine those minor-closed graph classes with clustered chromatic number 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalised Colouring Numbers on Classes of Bounded Expansion

The generalised colouring numbers admr(G), colr(G), and wcolr(G) were introduced by Kierstead and Yang as generalisations of the usual colouring number, also known as the degeneracy of a graph, and have since then found important applications in the theory of bounded expansion and nowhere dense classes of graphs, introduced by Nešetřil and Ossona de Mendez. In this paper, we study the relation ...

متن کامل

Colouring on Hereditary Graph Classes Closed under Complementation

A graph is (H1,H2)-free for a pair of graphsH1, H2 if it contains no induced subgraph isomorphic toH1 orH2. In 2001, Král’, Kratochvíl, Tuza, and Woeginger initiated a study into the complexity of Colouring for (H1,H2)free graphs. Since then, others have tried to complete their study, but many cases remain open. We focus on those (H1,H2)-free graphs where H2 is H1, the complement of H1. As thes...

متن کامل

Characterisations and examples of graph classes with bounded expansion

Classes with bounded expansion, which generalise classes that exclude a topological minor, have recently been introduced by Nešetřil and Ossona de Mendez. These classes are defined by the fact that the maximum average degree of a shallow minor of a graph in the class is bounded by a function of the depth of the shallow minor. Several linear-time algorithms are known for bounded expansion classe...

متن کامل

Hereditary Graph Classes: When the Complexities of Colouring and Clique Cover Coincide⋆

A graph is (H1,H2)-free for a pair of graphsH1, H2 if it contains no induced subgraph isomorphic toH1 orH2. In 2001, Král’, Kratochvíl, Tuza, and Woeginger initiated a study into the complexity of Colouring for (H1,H2)free graphs. Since then, others have tried to complete their study, but many cases remain open. We focus on those (H1,H2)-free graphs where H2 is H1, the complement of H1. As thes...

متن کامل

Cuts and bounds

Weconsider the colouring (or homomorphism) orderC induced by all finite graphs and the existence of a homomorphism between them. This ordering may be seen as a lattice which is far from being complete. In this paper we study bounds and suprema and maximal elements in C of some frequently studied classes of graphs (such as bounded degree, degenerated and classes determined by a finite set of for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017